Monamycin Synthetic Studies. Pt 1. An Enantiospecific Total Synthesis of (3S,5S)-5-Hydroxypiperazic Acid from D-Mannitol ## Karl J. Hale,* Neha Jogiya, and Soraya Manaviazar The Christopher Ingold Laboratories, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK. (e-mail: k.j.hale@ucl.ac.uk) Received 28 May 1998; accepted 20 July 1998 Abstract. The first enantiospecific total synthesis of (3S,5S)-hydroxypiperazic acid 1 is described. The synthesis begins from D-mannitol and exploits a tandem electrophilic hydrazination/nucleophilic cyclisation reaction to assemble the hexahydropyridazine ring system. © 1998 Elsevier Science Ltd. All rights reserved. The monamycins are structurally unique cyclohexadepsipeptides that show pronounced antibiotic effects against resistant strains of Gram-positive bacteria at low drug concentrations. First characterised in the early 1970s by Hassall and coworkers, the family currently consists of fifteen members, each of which contains the rare hexahydropyridazine, (3S,5S)-5-hydroxypiperazic acid 1. So far, asymmetric approaches to optically pure 1 have been lacking. The current method for obtaining 1 involves an optical resolution of the racemate with quinine, which is very uneconomical to perform on large scale. In this Letter, we now describe a convenient enantiospecific synthesis of 1 from D-mannitol that exploits a tandem electrophilic hydrazination and nucleophilic cyclisation reaction to build the homochiral hexahydropyridazine ring system. The essence of our strategy is depicted in retrosynthetic form in Scheme 1. ## Scheme 1 Bromide 4 was prepared in five steps (71% overall yield) from the known D-mannitol derivative 8⁴ via the route outlined in Scheme 2. Oxidative cleavage of diol 8⁴ with Pb(OAc)₄ in buffered CH₂Cl₂ furnished aldehyde 7 which readily participated in a Wittig-Horner olefination with known phosphonate 6⁵ under the Roush-Masamune conditions.⁶ This produced the crystalline alkene 5 as a single geometrical isomer. The silyl group was detached from 5 by treatment with 40% aq. HF in THF/MeCN (2:1); the product alcohol 9 was isolated in 85% overall yield from 8. Hydrogenation of 9 in EtOAc with 10% palladium on carbon (Aldrich, Wet Degussa Type) chemoselectively reduced the olefin, without disturbing the O-benzyl ether, to provide the alcohol 10 in good yield. Compound 10 was then brominated with Ph₃P (2 eq) and carbon tetrabromide (2 eq) (Aldrich) in dry THF at room temperature to furnish 4 as an oil in 83% yield from 9. Treatment of bromide 4 with LDA (1.1 eq) in dry THF and hexanes at -78 °C produced an enolate 3 that underwent a highly stereoselective hydrazination⁷ with di-tert-butylazodicarboxylate (DBAD) (1.2 eq). Tandem cyclisation³ of the resulting aza anion occurred after dry DMPU (16 eq) was added to the reaction mixture and it was stirred at room temperature for 50 min. After extractive work up with Et₂O and sat. aq. KH₂PO₄, product 2 was obtained in 50-66% yield after chromatographic purification and crystallisation. Unlike our previous synthesis of (3R)- and (3S)-piperazic acids,³ where the tandem cyclisation was complete after warming to 0 °C, cyclisation of the aza anion derived from 4 was slower. It required an extended period at room temperature to reach completion, which led to some epimerisation at the newly-installed C(3) stereocentre, as judged by TLC analysis. The diastereoisomeric product 11 moved slightly faster than 2 on TLC; it also had a mobility very similar to the hydrazinated bromide. As yet, we have been unable to obtain an accurate yield for 11, since extensive preparative TLC is needed to obtain it pure. The most convenient procedure for cleaving the chiral auxiliary from 2 reacted it with sodium methoxide in CH₂Cl₂ and methanol at -30 °C for 15 min (Scheme 3). Typically, this regime delivered 12 as an oil in 93% yield after chromatography. To complete the synthesis of 1 the following sequence of reactions was investigated. The O-benzyl ether was cleaved from 12 by catalytic hydrogenolysis with Pd(OH)₂ in methanol, and the resulting alcohol temporarily O-acetylated to obtain 13. This permitted a clean and high yielding deprotection of the two Boc groups with trifluoroacetic acid. Crude 14 was then reacted with excess LiOH (6 eq) in THF and H₂O for 1 h at 0 °C to obtain 1. To isolate 1 the reaction mixture was acidified to pH 4 with aq. HCl and the solvents removed *in vacuo*. After concentration of the residue from H₂O several times, the product was then purified by SiO₂ flash chromatography with 6:1 CH₂Cl₂/MeOH as eluent. Reverse-phase chromatography on a C(18)-column with H₂O as eluent then led to 1 as a hygroscopic gum. Since the ¹H NMR spectrum for **1** has not been reported, we elected to convert synthetic **1** into the known DNP derivative **15**,⁸ for which ¹H NMR data and other physical constants have been published.^{1b} Compound **15** prepared by us had a 400 MHz ¹H NMR spectrum in DMSO-d₆ that was fully consistent with the data reported for **15** by Hassall.^{1b} Our totally synthetic sample of **15** also gave rise to an (M+H)⁺ ion at *m/e* 313.0774 in its high resolution mass spectrum. Delighted at having secured the *first* enantiospecific total synthesis of 1, we next set out to prepare the partially-protected derivatives 16 and 17 (see Scheme 4). We also investigated the chlorination of 18 with Ph₃P (1.5 eq) in an excess of CCl₄ and MeCN (1:1) at r.t. (Scheme 4). In addition to 19, an elimination product was encountered in this reaction, although its precise structure still awaits determination. Clearly, the aforementioned chlorination protocol may prove useful for an eventual synthesis of (3R,5S)-5-chloropiperazic acid, which like 1, is a key constituent of monamycins G_1 to I. Further details of the synthetic chemistry described in this Letter will be given in our full account. Acknowledgements. We thank the EPSRC (GR/L09899), Pfizer, and Zeneca for generous financial support, and the ULIRS MS Service at the London School of Pharmacy for HRMS measurements. ## **References and Notes** - (a) K. Bevan, J.S. Davies, C.H. Hassall, R.B. Morton, and D.A.S. Phillips, J. Chem. Soc. (C), 1971, 514; (b) C.H. Hassall, Y. Ogihara, and W.A. Thomas, J. Chem. Soc. (C), 1971, 522; (c) C.H. Hassall, R.B. Morton, Y. Ogihara, and D.A.S. Phillips, J. Chem. Soc. (C), 1971, 526; (d) C.H. Hassall, W.A. Thomas, and (in part) M.C. Moschidis, J.C.S. Perkin Trans. 1, 1977, 2369. - 2. C.H. Hassall and K.L. Ramachandran, Heterocycles, 1977, 7, 119. - 3. K.J. Hale, J. Cai, V. Delisser, S. Manaviazar, S.A. Peak, G.S. Bhatia, T.C. Collins, and (in part) N. Jogiya, *Tetrahedron*, **1996**, 52, 1047. - 4. U. Peters, W. Bankova, and P. Welzel, Tetrahedron, 1987, 43, 3803. - 5. C.A. Broka and J. Ehler, Tetrahedron Lett., 1991, 32, 5907. - 6. M.A. Blanchette, W. Choy, J.T. Davis, A.P. Essenfield, S. Masamune, W.R. Roush, and T. Sakai, *Tetrahedron Lett.*, **1984**, *25*, 2183. - 7. D.A. Evans, T.C. Britton, R.L. Dorow, and J.F. Dellaria, Tetrahedron, 1988, 44, 5525. - 8. Crude 14 has also been converted to 15 as shown below. The product is best purified on a C(18)-column, eluting with 2:1 H₂O/MeOH to remove impurities, and 4:1 MeOH/H₂O going to 15:1 MeOH/H₂O to obtain 15 as a golden solid: m.p. 188-190 °C; [α]_D -245 ° (c. 0.04 Me₂CO), Lit. ^{1b} [α]_D -240 ° (c. 0.15 Me₂CO). 9. All new compounds gave satisfactory IR, 400 MHz ¹H and 100 MHz ¹³C spectra, as well as HRMS and/or combustion microanalytical data. Selected data: (15) 100 MHz ¹³C NMR (CD₃OD) (shifts relative to MeOH septet at δ 49.0) δ 173.9, 148.8, 139.9, 139.2, 128.2, 122.9, 116.5, 65.7, 57.6, 54.1, 38.3, 400 MHz ¹H NMR (DMSO- d_6) (shifts relative to Me₂SO quintet at δ 2.49) δ 8.31 (d, J = 2.7 Hz, H-3'), 8.17 (dd, 2.72.7, 9.5 Hz, H-5', 7.19 (d, J = 9.5 Hz, H-6'), 5.06 (d, J = 11.8 Hz, NH), 3.95 (dd, J = 4.7, 11.8 Hz, H-6eq),3.73 (m, H-5), 3.31 (m, H-3), 2.79 (apparent t, J = 11.0 Hz, H-6ax), 2.18 (m, H-4eq), 1.29 (apparent dd, H-4eq)4ax) [Hassall's values and assignments for (15)1b 100 MHz 1H NMR (DMSO- d_6) δ 8.30 (H-3'), 8.17 (H-5'), $7.20 \text{ (H-6')}, 5.02 \text{ (NH, } J = 12 \text{ Hz)}, 3.88 \text{ (H-5)}, 3.70 \text{ (H-6eq)}, 3.34 \text{ (H-3)}, 2.80 \text{ (H-6ax)}, 2.19 \text{ (H-4eq)}, 1.30 \text{ (H-6')}, 5.02 \text{ (NH, } J = 12 \text{ Hz)}, 3.88 \text{ (H-5)}, 3.70 \text{ (H-6eq)}, 3.34 \text{ (H-3)}, 2.80 \text{ (H-6ax)}, 2.19 \text{ (H-4eq)}, 1.30 \text{ (H-6')}, 5.02 \text{ (NH, } J = 12 \text{ Hz)}, 3.88 \text{ (H-5)}, 3.70 \text{ (H-6eq)}, 3.34 \text{ (H-3)}, 2.80 \text{ (H-6ax)}, 2.19 \text{ (H-4eq)}, 1.30 \text{ (H-6')}, 3.00 (H$ (H-4ax)]; (1) 400 MHz ¹H NMR (D₂O) (shifts relative to TSP at δ 0 and HOD at δ 4.79; sample preexchanged with D₂O) δ 3.81 (m, H-5), 3.39 (m, H-3), 3.12 (m, H-6), 2.51 (m, H-6), 2.33 (m, H-4eq), 1.46 (m, H-4ax); (20) 400 MHz ¹H NMR (CDCl₃) δ 8.39 (d, J = 2.6 Hz, H-3'), 8.20 (dd, J = 2.6, 9.3 Hz, H-5'), 7.02 (d, J = 9.3 Hz, H-6'), 5.03 (m, H-5), 4.07 (dd, J = 4.5, 12.4 Hz, H-6eq), 3.79 (d, J = 11.2 Hz, NH), 3.70 (do, 1(m, H-3), 3.70 (s, 3H, OMe), 3.02 (m, H-6ax), 2.41 (m, H-4eq), 2.07 (s, 3H, OAc), 1.69 (apparent dd, H-4ax); (16) $[\alpha]_D$ +18.5 ° (c. 0.2, CH₂Cl₂), 400 MHz ¹H NMR at 100 °C (DMSO-d₆) δ 7.35-7.24 (m, 10H), 5.10 (s, 2H), 4.88 (d, J = 8.4 Hz, 1H), 4.55 (s, 2H), 4.09 (m, 1H), 3.65 (s, 3H), 3.64-3.48 (m, 2H), 2.95 (m, 1H), 2.31 (m, 1H), 1.57 (m, 1H); (2) 400 MHz ¹H NMR (CDCl₃) δ 7.33-7.06 (complex m), 5.84 (br), 4.71 (d, J = 10.1 Hz), 4.63 (br d, J = 14.0 Hz), 4.54-4.28 (very br m), 4.23 (d, J = 10.1 Hz), 4.06-3.87 (complex br m)br m), 3.78 (br), 3.70 (br s), 3.53-3.38 (very br m), 3.34 (br d, J = 13.5 Hz), 2.90 (br d), 2.58 (br m), 2.21 (br d), 2.07 (br), 1.57 (large s), 1.52 (small s), 1.49 (large s), 1.47 (small s), 1.43 (small s); (4) 100 MHz ¹³C NMR (CDCl₃) δ 172.7, 153.4, 137.8, 135.2, 129.3, 128.9, 128.4, 127.8, 127.3, 77.2, 71.8, 66.1, 55.1, 37.8, 34.1, 31.3, 27.9; **(5)** 100 MHz ¹³C NMR (CDCl₃) δ 164.5, 153.2, 147.5, 138.0, 135.6, 135.3, 133.2, 129.7, 129.4, 129.0, 128.4, 127.8, 127.7, 127.6, 127.3, 122.2, 79.2, 71.6, 66.1, 66.0, 55.3, 37.8, 26.8, 19.2.